SYLLABUS

Name of the course:	Introduction to hydrodynamic stability					
Level of studies:	Master degree, doctoral studies					
Direction, specialization:	all					
Code:		Semester: 2		No. Of	ECTS: 3	
Level of the course: advanced	Type of the course: elective					
Total volume: 70 h	Lectures: Tutorials: 0 Consultations: Project:	30 h 1 h 5 h 15 h	Self-stu	dy:	20 h	
Course director: prof. dr hab. inż. Jacek Szumbarski						

Educational goals:

- C1. Goals and principles of stability analysis in fluid mechanics
- C2. Presentation of main mechanisms/scenarios/criteria of hydrodynamic instabilities
- C3. Presentation of theoretical foundations of linear stability theory applied to parallel flows.
- C4. Presentation of the normal mode approach to linear stability on the example of flows in channels with corrugated walls.
- C5. Presentation of selected numerical methods for linear stability analysis
- C6. Presentation of the methodology of research of a phenomenon of transient disturbance growth and explanation of its role for laminar-turbulent transition scenarios.
- C7. Presentation of the concepts of convective and global instabilities and modeling of wave packets and related mathematical tools.
- C8. Development of basic skills in numerical analysis of selected stability problems, also by means of selfdeveloped computational tools.

Assumed competences:

- 1. Knowledge and skills in fluid mechanics on the 1st level of mechanical engineering studies
- 2. General orientation and skills in basic numerical methods
- **3.** Basic knowledge and skills in mathematical analysis, linear algebra and differential equations, typical for the 1st level of mechanical engineering studies.

Learning outcomes (knowledge)

- EW1 Student knows basic instability scenarios including typical examples.
- EW2 Student knows general principles and concepts of linear stability analysis, understands the concepts of asymptotic stability and the normal mode method.
- EW3 Student knows classical criteria of instability of inviscid parallel flows.
- EW4 Student understands the role of fluid viscosity in the hydrodynamic instabilities
- EW5 Student knows the goals and methods of analysis of a transient growths of small disturbances
- EW6 Student understand the difference between convective and global instabilities, and he/she is able to give adequate examples.

Learning outcomes (skills)

- EU1 Student is able to describe physical mechanisms of basic forms of hydrodynamic instabilities
- EU2 Student is able to derive the set of equations for small disturbances in a general parallel flow
- EU3 Student is able to verify classical stability criteria for a given parallel flow
- EU4 Student can propose and formulate a numerical method for stability analysis of selected flow cases
- EU5 Student is able to justify the need for transient disturbance growth analysis and proposed an adequate numerical approach to such problem
- EU6 Student is able by his/her own or in a team to solve numerically a given stability problem and properly interpret results of the calculations

Learning outcomes (social skills)

ES1 – Student is able to work productively in a teams, take up responsibility and provide on time required results.

Content of the course

Lectures	н	ours			
Introduction: overview of main concepts, definitions and tools from linear algebra, analysis and differentia equations.		2			
Elements of stability and bifurcation theory on the example of simple dynamical sys	tems.	2			
Basic forms and mechanisms of hydrodynamic instabilities. Examples.		2			
Theory of linear instability for inviscid flow. Selected criteria of instability.		4			
Linear theory for viscous parallel flows. The Orr-Sommerfeld and Squire equations. Squire's theorems.	The	4			
Case study – detailed linear stability analysis of the Poiseuille flow.		2			
Case study – linear stability analysis of the flow through the channel with corrugate	d				
walls. Application to intensification of mixing in a laminar regime.		4			
The problem of transient growth of subcritical disturbances – general formulation a solution methods.	nd	2			
Case study – transient disturbance growth in the Poiseuille flow		2			
Case study – transient disturbance growth in the flow through the corrugated chan	nel	4			
Elements of the spatial stability analysis. Dynamics of wave packets, Gaster's					
transformation, convective and absolute instabilities. Examples.		4			
Project (15 h)					
The project consists in development of a part or whole computer code and its applie to a given hydrodynamic stability problem. Dependently on the leve complexity/difficulty and expected workload, such project will be realized individua in pairs. The outcome of the project includes a complete written report, se presentation and full computer code developed by the author(s).	cation el of ally or minar				
Recommended reading	I				
1. Materials (PDF presentations) provided by the lecturers.					
2. Scientific publications suggested by the lectures					
3. P.G. Drazin, Introduction to hydrodynamic stability, Cambridge University Press, 2002.					
4. Francois Charru, Hydrodynamic Instabilities, Cambridge University Press, 2011.					
Student's workload					
Form of activity	Hour	S			
Contact hours (lectures)					
Contact hours (consultancy)	5				
Self-study, work on the project	35				
SUMM	70				

Didactic tools

- 1. Lecture presentations (PDF, Power Point)
- 2. Instructions to home projects
- 3. Home problems
- 4. Related websites and repositoria

Evaluation methods

Elements evaluated and contributing to the final grade: outcome of the tests from the lecture material, activity in solving the home problems, the outcome (including quality of the final report and seminar presentation) of the individual (or team) project.

Realization of learning outcomes							
Learning outcome	Relevance for the whole program	Teaching objectives	Didactic tools	Evaluation			
EW1		C1,C2	Lecture, self-study	Numeric mark (2 to 5)			
EW2		C2, C3	Lecture, self-study	As above			
EW3		C2,C3	Lecture, self-study	As above			
EW4		C2,C3	Lecture, self-study	As above			
EW5		C6	Lecture, self-study	As above			
EW6		C7	Lecture, self-study	As above			
EU1		C1,C2	Self-study, homework, project	As above			
EU2		C3,C4,C6	Self-study, homework, project	As above			
EU3		C2,C3,C4	Self-study, homework, project	As above			
EU4		C5,C6,C8	Self-study, homework, project	As above			
EU5		C6	Self-study, homework, project	As above			
EU6		C5,C8	Self-study, homework, project	As above			
ES1		C8	project				